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Output  Processes in Contention  Packet 
Broadcasting  Systems 

Abs@ct-The processes consisting ,of the  packet  interdeparture times 
in contention-type packet broadcasting systems are  studied  under  the 
heavy-traffic assumption. The  channel access protocols considered 
include slotted and unslotted ALOHA and  carrier-sense-multiple-access 
(CSMA) with  and without collision detection. Through analysis of the 
channel activity cycle, the distribution, mean, and coefficient of variation 
of the  packet  interdeparture times are explicitly derived.  Taking  the 
reciprocal of the  mean  interdeparture time, we obtain the  channel 
throughput. Cases with dissimilar users  are  mainly considered, and 
systems of statistically identical  users  are  treated  as  special cases. 

T 
I. INTRODUCTION 

HIS  paper  presents an analysis of packet interdeparture 
times (i.e., intervals  between two consecutive  successful 

transmissions) for a number  of  channel  access  protocols 
encountered in packet broadcasting  communication  systems 
such as packet  radio  networks  and local-area, computer 
networks.  Specifically, we  are interested in the average X atld 
the coefficient of variation C2 = Var [ ; y l / X 2  of the packet 
interdeparture time X for given  protocols.  Throughout  the 
paper we assume  the  constant packet transmission  time to  be 1 
as the unit of time. Then, S = l/x is  equivalent to  the 
channel  throughput, which can alternatively be obtained as 
the  ratio  of the average  time that the channel  is used for 
successful  transmission in a  cycle of channel usage to the 
average  cycle  duration. Our approach  is to calculate X and C2 
from  the  distribution of X .  We  also make the heavy-traffic 
assumption ,that all  users  contain  packets  all  the  time. 

The channel  access  protocols we consider here include: 

a) Pure ALOHA [l] 
b) Slotted ALOHA [7] 
c) Slotted carrier-sense-multiple-access  (CSMA) [4 ] ,  [ 101 
d) Slotted CSMA with collision detection (CSMA/CD) [l I ]  
e )  Unslotted CSMA [4 ] ,  [ 101 
f) Unslotted CSMA with collision  detection. 

(Each  protocol  model is described individually below.)  In 
all  models, we  assume the memoryless property that when- 
ever a  user  experiences an idle  (nontransmitting) period, he 
renews his action independently of the past happenings.  Then 
we can  find  the  distribution of X explicitly for all of the above- 
listed protocols. We may assume  that  each  user  has  a  different 
value for its transmission parameter, such as the  probability of 
transmission in a slot. Such a case  occurs,  for example, in the 
priority-based ordering of users, or the adaptive  self-adjust- 
ment of parameter values according to  the imposed  load. 
Below we mainly consider  these  cases of nonidentical users, 
and  treat  systems  of identical users as special  cases. 

Paper  approved by the  Editor  for  Computer  Communication  of  the IEEE 
Communications  Society.  Manuscript  received  September 3, 1982;  revised 
April  17,  1985.  This  work  was  supported by the  Defense  Advanced  Research 
Projects  Agency  under  Contract MDA 903-82-C-0064. 

H. Takagi is with  IBM  Japan  Science  Institute,  Tokyo  102,  Japan. 
L .  Kleinrock is with the  Department of Computer  Science,  University  of 

California,  Los  Angeles.  CA  90024. 

Using the  mean and variance  of the backet interdeparture 
times from the system,  we can get the  average  and  variance of 
the  number  of  successful  transmissions iri a  given long 
interval. Furthermore, we can  relate  these  system-wide 
quantities to the means and covariances of the  numbers  of 
successful  transmissions from  the individual users.  They can 
then be used to determine the coefficients in the diffusion 
process  approximation to  the  user's queue  length  distribution 

As related work,  we note Tobagi's  analysis of packet 
interdeparture time based on the "linear feedback model" of 
slotted ALOHA and slotted CSMA [12]. I For pure ALOHA, 
Ferguson [ 2 ]  gives  an  approximation to the packet interdepar- 
ture time for a  randomly  selected  user. 

[91. 

11. THE  NUMBER OF SUCCESSFUL TRANSMISSIONS 
Let {X("); n = 1, 2 ,  } be a  sequence of packet 

interdeparture  times  (from the  entire system) beginning at  the 
end of an  arbitrarily  chosen  successful  transmission (let this 
instant be the time origin t = 0). For all  memoryless  protocols 
defined above, they are independent and identically distrib- 
uted; their  generic  representation  is X .  Then 

defines  the time  at which  the nth successful transmission 
completes. By definition, {S(");  n = 1, 2 ,  . . - }  is  a renewal 
process; see,  for example, [ 3 ] .  For time t > 0, let D(t)  be the 
number  of  successful  transmissions  completed  during an 
interval [0, t ] :  

Now renewal  theory tells us 

m 1 .  Var [D(t)]  Var [ X ]  lim - lim 
I - -  t x ' t -m t x3 - - (3) 

Thus,  the asymptotic  behavior of D(t) and Var[D(t)] can be 
obtained from X and  Var[Xj. 

Next, let us assume that M < 00 is the number of users in 
the  system  whose  transmission  parameters are not necessarily 
identical.  They are indexed as 1, 2 ,  . , M .  Let Di(t)  be the 
number  of  successful  transmissions  completed by user i during 
[0, t ]  ( i  = 1 ,  2 ,  . . . , M ) .  Let qi be the  probability that a 
successful transmission  is  achieved by user i ;  .ZE, q i  = 1. (In 
the case where  all  users have the same  parameter  value, we 
have qi = l / M . )  Then it can be readily shown  (see Appendix 
A) that  the means and  covariances of [DI( t ) ,  D2(t) ,  . * . , 

I A referee,  of  this  paper  has  pointed  out  that,  once  the  heavy  traffic 
assumption is made,  the  whole  analysis in [12]  reduces  immediately  to  a  single' 
equation  similar to that  given in the  present  paper.  However,  [12] only deals 
with slotted  ALOHA  and  slotted  CSMA  systems  of  statistically  identical  users 
(without  the  heavy  traffic  assumption),  while  we  consider  other  protocols  and 
cases of nonidentical  users as well  (with  the  heavy  traffic  assumption). 
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unsuccessful transmission  period,  respectively,  and T be the 
duration of the  successful  transmission  period. Then, we have 

K- 1 

where 

1 i = j  
0 i z j .  

We note that the dependence of D;(t) and D,(t)  (i # j) comes 
from  the fact  that  when  user i is  successful,  user j is not, 'and 
vice versa: Therefore, by use  of ( 3 )  and (4), we can obtain the 
asymptotic  behavior  of  the  numbers  of successful transmis- 
sions by. individual users. 

We  remark that if {X?);  n = 1,  2, . } is a  sequence  of 
packet  interdeparture  times from user i ( i .  = 1, 2, * e ,  M )  
beginning at t = 0 (which  can be  the completion time of some 
other user), then {SI"); n = 1, 2 ,  . . A}, where S?) = xi') + 

process; i.e., the  distribution  of XI') is not identical to those of 
X$,  Xi3), - . . whi,ch are identical  and  generically  denoted by 
X; .  However,  for D;(t) = max ( h ;  S?) < t } ,  we still have the 
asymptotes 

XI" + . . . + X?) (n = 1, 2, . . -), is  a delayed renewal 

lim 
Var [Q(t)] Var [X;]  - - 

I'm t 
i = l ,  2, e - . ,  M. ( 5 )  

xj3 

Substituting ( 3 )  and ( 5 )  into (4) for i = j, we get  the 
relationship 

s; = qi s* , 1 - C f = q ; ( l - C 2 )   j = l , ' 2 ,  e * * ,  M (6)  
where C: = Var [X;]/.%:, and S; = l/.%; is  the  throughput of 
user i .  In the case of identical users (qi = l / M ) ,  (6) reduces 
to 

S=MS;;  1 - C Z = M ( 1 L C : )   i = l ,   2 ,  e . . ,  M. (7) 
We note that (6) and (7) can also  be derived .by considering 
random  splitting  of  a  non-Poisson  stream as shown in [SI. 

111. I CASES OF IDENTICAL  UNSUCCESSFUL TRANSMISSION PERIODS 
In  this section,  we consider  the  packet  interdeparture  time X 

for a  subset  of  memoryless  protocols in a unified manner. To 
do SO, we define  the transmission period in a  channel as the 
state where  at least one user  is  transmitting or any  transmission 
is being sensed. Also, the  channel idleperiod is  defined as the 
state where  no  users  are transmitting or  no transmissions are 
being sensed. Thus,  the channel  state  alternates  between  the 
transmission and idle  periods. (There can be  two consecutive 
transmission periods with an  idle period of duration 0 between 
them.)  Also, 'each successful  transmission  period  is  preceded 
by a number  of alternating idle  periods and  unsuccessful 
transmission  periods. 

Cases  treated in this  section are categorized  such  that 
successive  unsuccessful  transmission  periods are identically 
distributed. In this  category  fall slotted systems (ALOHA, 
CSMA,  CSMA/CD) of  nonidentical  users and unslotted 
systems of identical  users. Below,'  we first  discuss  the 
distribution  of X generally. Then we show two examples to 
which our analysis  is applied. 

Now, let K be  the  number of transmission  periods included 
in X of which the  last one is the only successful transmission. 
Let I(k) and Fck) be the  durations  of the  kth idle  period  and kth 

k =  1 

Since we have assumed  the  memoryless  property in protocol, 
the beginning of  each  idle  period  is  a  system  renewal  point 
(i.e., the behavior  of  the  system after that point does not 
depend on what happened before,  that  point). Therefore, {I(k); 
k = 1, 2, * . - }  are independent  and identically distributed 
random  variables  whether  users are identical or not; let I be a 
generic  representation  of  the I ( k ) ' s .  For the same reason, the 
sequence of {Fck); k = 1 , 2  * } , consisting  of Fck) following 
I(k), are independent  variables. Furthermore,  we assume  that 
{Fck); k = 1 ,  2, * . . } are identically distributed. 'So, let F be 
the  generic  representation  of the F(k) ' s . ,  Thus, a  'sequence  of 
renewal cycle  durations {ICk) + F(k); k = 1, 2, . } are 
independent and identically distributed as I + F. Also, Z(m + 
T i s  independent  of the, previous  cycles  and  is  distributed as I 
+ T. By these  arguments, we can compute' the mean and 
variance of X directly AS 

where we have  assumed  that F ( k )  and Tare independent of I(k). 
If we denote by I*(s), F ( s ) ,  and P(s)  the Laplace 

transforms of the p d f s  for I ,  F, and T, respectively, and 
denote by K*(z) the z-transfotm of the distribution  of K ,  then 
under the  same assumptions;the Laplace  transform  of the pdf 
for X,   X*(s) ,  is given by 

m 

X*(,)= [ I * ( ~ ) F * ( s ) ] ~ - ~ [ l * ( s ) T * ( s ) ]  . Prob [ K = k ]  
k =  1 

or 
T*(s) . ' 

X * @ )  = - 
F *is) 

K*[Z*(S)F*(S)]. 

Now, let y be  the probability of a successful  transmission 
once  it has been started by breaking the channel  idle  period (y 
is  a  protocol-dependent  function  of M and. other  system 
parameters). Then,  clearly, K has a  geometric  distribution 

Piob [ K = k ] = ( l - ~ ) ~ - ' y  k=  1 ,  2 ,  * * e  

K * (z)  = 
YZ 

1 -z(l-y) ' 

K = -  - 1  
; Var [ K ]  =- . 1-7 

Y Y 2  
From (10) and ( l l ) ,  we obtain the fundamental  relationship 

X*(s)  = 
rT*(s) 

1 

Therefore,, given  a protocol, x and C2 can be computed by 
(9) and (1 1) if we obtain y and  the means and  variances  of I ,  F, 
and T depending on  the protocol. Also, by (12), X*(s) can be 
obtained from y and the distributions of I ,  F, and T. 
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A .  Pure ALOHA (Znfinite Population) 
For pure (or unslotted) ALOHA  where all packets have the 

same length 1, we can analytically obtain the distribution of X 
(and Cz) only for  an infinite population of  users  who 
collectively form a  Poisson source of packet  transmissions. 

Let us consider  an infinite population of users  from which 
packets are transmitted  such that the  interarrival  times are 
independent and  exponentially (identically) distributed with 
mean 1/G; see Fig.  l(a).  Then, from its memoryless  property, 
the  channel  idle  time  is  exponentially  distributed in the same 
way : 

- 1  1 I=- Var [Z]=- . 
G '  G2 

G 
G + s  

Z*(s) = - 

The probability of a  successful  transmission of an idle-period- 
breaking packet is  given by 

y = e-G, (14) 
i.e.,  the probability  of no other  transmissions  during  its entire 
transmission  period T = 1 ( P ( s )  = e-s). The duration  of an 
unsuccessful transmission  period F is  analyzed in Appendix B, 
where we  derive 

Ge-(S+G)[l - e - ( s + G ) ]  
F*(s) = 

( 1  - e -G) [ s+Ge- ( s+G) ]  ' 

eG - 1 - Ge-G eZG 2eG E =  ; Var [ F ] = - - - -  
G( l  - e - G )  G 2  G (1 -e -G)2  ' 

( 1 5 )  
Substituting (13)-(15) into (9), ( l l ) ,  and (12), we get 

Ge-(s++G)[s+ Ge-(S+G)] 

s2+sG[1 + , - ( ~ + G ) I + G ~ ~ - ~ ( s + G )  X*(s)  = 

C 2 =  1+2e-G-2e-2G-4Ge-2G.  (16) 

We note that the  result for C2 is new while  the  expression for S 
is given in [I]. For G = 1 /2, which maximizes S ,  we have S 
= 1/(2e) = 0.1839 and C2 = 0.7415. 

B. Slotted CSMA and CSMA with Collision Detection 
We now proceed to analyzed  slotted  CSMA where  the slot 

size is equal to a, the  ratio of the signal propagation delay to 
the packet transmission  time. We consider CSMA/CD such 
that an unsuccessful  transmission  period  lasts b + a, where a 
< b < 1 ; X is  illustrated in Fig. l(b).  Thus, the  case b = 1 
corresponds to  CSMA without  collision  detection. 

Let user i start to transmit  (after  sensing any idle slot) with 
probability pi independently of all others. Such a  transmission 
is  successful if none  of the,other users have started  transmis- 
sion at the same time.  (After  the  first  slot  of  transmission 
period, no other users  start transmiesion because they sense 
the  channel  busy.) Thus,  we have  the  expression 

y= U/(1  - E )  (17) 

where 

M M M  

E = H  ( 1  -p;);  U = c  p;  ( 1  - -pj) .  (18)  
i=  1 ; = I   j = 1  

( i + i )  

I - X I  

I I TIME - 
(d) 

Fig. 1. Packet  interdeparture  times X .  (a) Pure ALOHA. (b) Slotted CSMA 
with collision detection.  (c)  Unslotted CSMA. (d) Unslotted CSMA with 
collision detection. 

The channel  idle period is  geometrically  distributed as 

Prob [Z=na]=E"( l -E)   n=0 ,  1 ,  2, 

Z*(s) = 
1-E  

1 - e-asE 
The transmission  periods are of  constant length: 

T = l + a ;   F = b + a  
or 

T*(s)  = e-s(l +a) -  F*(s) = e-s(b+a). (20) 
Substituting (17), (19), and (20) into (9) and (1 l ) ,  we get 

U 
a+  U+ b ( 1 -   U - E )  

S =  

Var [ X ]  = 
[a+b(l   -E)I2  b2E-(b+a)2 

u2 
+ 

U . (21) 

From (12), we  also get 

from which we have 

Prob [ X = l + a + n a + k ( b + a ) ]  

= u ( n ~ k ) E n ( l - U - E ) k ;  n ,  k = 0 ,  1 ,  2 ,  e . . .  

The implication of (23) should be  clear, since n and k are the 
numbers of idle slots  and  unsuccessful  transmission  periods, 
respectively,  experienced until the  time of a  successful 
transmission. 

For individual users,  the throughput Si and  the  coefficient  of 
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variation  of  interdeparture  times C: can  be  calculated by (6) 
'with 

It  can  be  shown  that  the  maximum  allowable  throughput 
contour  in  the {pi} space  is  given by 

M 

a+b( l  -E)=(a+b)  pi. (251 
i =  I 

In  the  case  of  identical  users (pi  = p for  all i), (25) reduces  to 

(a+b)(I -pM)=b(l  - p ) M  (26) 

which  was  derived by Molle [6] in his  study of the "local 
optimality"  condition. It  can  be  proved that with the  value o f p  
determined by (26), we  have Cz < 1 .  In  the  case  of CSMA 
without  collision  detection (b  = l ) ,  we  have 

' U  
; C * = l - U  [ ] . (27) S =  

( 1  +a)2--E 
I + a - E   ( ~ + Q - E ) ~  

The channel  throughput S in (21) in the  limit A4 -+ 00 with G 
fixed  such that'aG = p M  

aGe-uG 
p + + b(1- - e-uG) 

S =  (28) 

has  been  obtained  in [ I  I]. The result  for  the  case of no 
collision  detection (b = 1) was  given  incorrectly in [IO] and 
was  corrected in [4]. (The plot in [4], however, was for  the 
result in [lo]; the  corrected  plot  was  given by Molle [6]). 

IV. UNSLOTTED CSMA 

We next  consider  unslotted  CSMA  where  the  propagation 
delay  is  again  denoted by a ;  for  an  illustration of X ,  see  Fig. 
l(c). We  assume that  user i schedules.  his  next  transmission at 
an  exponentially  distributed  time  after  he  has  sensed  the 
channel  idle.  Let l / g i  be  the  mean  of  this  exponential 
distribution.  Since  the  channel  idle  time Z is  the  minimum of 
all  user's  scheduling  delays,  its  distribution  is  given by 

Prob [ I  < y ] = l - e x p  

i =  1 

The  terms in a  sequence of {I(') + FCk); k = 1 ,  2,  . . . } in 
(8) are,  however,  no  longer  identically  distributed  although 
they are independent.  Also,  the  probability of success for  an 
already  started  transmission  differs  from  cycle to  cycle, 
depending on which  user  initiates  the  transmission  period.  Let 
us look  at  these  points  more  closely. 

First, notice  that  the  probability  that  user i ,among  others 
begins  transmission,  breaking  the  channel  idle  period, is given 
by 

V i = M  

M 

gi ; v j = 1 .  
gj  i = l  

j =  1 

The probability  of  success in a  cycle  where  user i initiates 

transmission  period  is  then  given by 

For  later  use,  let  us  denote by 

M r M l  

i =  1 

the  probability  that  a  transmission  period is successful. 
In  an  unsuccessful  transmission  period  initiated by user i ,  let 

Y(i)  be  the  transmission  start  time  of  the  last  colliding  packet. 
Its  distribution  is  given by 

fi (1 - e-gjY + e-g.0 
j =  1 

J ) - T i  

Prob [ Y( i )  < y ]  = 
1 

9 

0 < y < a. (33) 
NOW, (8) can  be  written as 

where vik(l - yik)  is  the  probability  that  the  kth  transmission 
period is initiated by user ik and  that it involves  collision. 
Equation (34) for Xcan  be simplified by using (30) and (32) as 
follows: 

n - l  M 

n =  I k = l  i k = l  

+ ( I  -y)"-'y[I("'+ 1 +a] . (35) 1 
Let us define  a  random  variable Y by 

Then  we  have 

x= (1 -y)"-'y 
m 

n =  I 

Note  that (37) is  of  the  same  form as (8) conditionally 
summed.  Therefore, (12) for X*(s) still  holds  when T and F 
are  given by 

T= 1 +a;  F =  1 + a +  Y (38) 
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and Y in (36)  is  used. Thus we  get  variance of X are given by 

X = - ( I + l + a ) +  - - 1  B 
1 -  

Y (: 1 
+ ( I + l + a + P ) Z -  1-7 (39) 

Y2 

M -  
Var [ Y ] = c  Y(i)'v;(l -yJ/(l - y ) - p .  (40) 

i =  1 

Especially,  we  have  explicitly 

i =  1 

' (41) 
Note  that q;, the  probability  that  a  successful  transmission is 

achieved by user i, is  now  given by 

j =  I 

2-e-aG (1  +2a)2 ' 1 +2a 
Var [X]=-+--- c Z e - a G  e-2aG e -aG ' (46) 

V. UNSLOTTED CSMA WITH COLLISION DETECTION 
The  case  of  unslotted  CSMA with collision  detection  can be 

treated  similarly  except  for  the  duration of an  unsuccessful 
transmission  period,  which  is now expressed as 

F=b+a+ Y, (47) 

where b is  the  time  required  for  an  idle-period-breaking  user 
to  abort  its  transmission  after  the  first  colliding packet has 
started  transmission,  and YI  is  the  time  offset of the  first 
colliding  transmission;  see  Fig. 2 for  the  channel  timing  chart 
(adapted  from [ 111 for  the  unslotted  system)  and  see  Fig. l(d) 
for  the  packet  interdeparture  process. We  assume that a < b 
5 1 ; the  case b = 1 in an unslotted  system  is not equivalent to 
the  one  without  collision  detection.  (Our  proposition  for  the 
duration of F given in (47)  differs  from  that of Molle  [6], who 
used F = b + a + Y where Y is the  transmission  start  time of 
the  last  colliding  packet.  As  shown in Fig. 2 ,  it is the  first 
colliding  packet  that  stops  the  transmission of the  leading 
packet  lingering  until  the  last;  other  transmissions  have  been 
aborted  before by detecting  the  leading  packet.  Thus,  (47) 
seems  more  reasonable  although  the  difference  is of order a.) 

The analysis in Section IV  can  be  readily  applied  to 
unslotted CSMA with collision  detection.  Instead of (37),  we 
have 

x= ( 1  -y)"-Iy 
m 

n = l  

Thus, the  throughput of user i is given by where Y, is  a  random  variable  defined by 

In  the  case of identical  users (g, = g for all i), we  have  the 1 M  

channel  throughput of unslotted CSMA  as Prob [ YI  < y ]  =- v j ( l  - yi) 
1 -Y , = I  

e-ga(M- 1) 
S= . (44) - Prob [Yl(i) < y ]  0 < y < a (49) 

and Yl(i) is  the  transmission  start  time of the  first  colliding 
packet  in  an  unsuccessful  transmission  period  initiated by user 
i. In  (48)  and  (49), I(k) is  the  kth  channel  idle  period  duration, 
and vi, y, and yi are given in (30)-(32). The distribution  of 

1 -+ 1 +2a-  (1 -e-gY+e-ga)M-l dy 
gM 1: 

For M --* 03 with G fixed at G = g M ,  since ( 1  - e-gy + y1(i) is given by 
e - g a ) M - I  = - [ I  - g(a  - y)IM-I z e-C(a-J'), (44)  reduces to 

M 

Ge- ac exp [ -Y gj] -7; 
S= (45) 

G(1+ 2a) + e-aG Prob [ Yl ( i )  > y ]  = ( j  f 0 O < y < a  1 -v ;  
given in [4] and [ 101. In  this  limit,  the  distribution  and 

, I  
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.-bi 

I .  

J V , k  a: SIGNAL PROPAGATION TIME k-a-4 
I 

C I :  CHANNEL JAMMING  TIME 
CD: COLLISION DETECTION TIME 

b=  a+CD+W;a+CD<l  

Fig. 2. Collision  detection  timing in unslotted CSMAKD. 

from which we  have 

where 

Therefore,  we  can  compute 

X =  - - 1  ( I + b + a + F , ) + I + l + a  (t ) 
1 

Y 
Var [X]  =- Var [ I ]  + 

+ ( l + b + a +  -.. 
1 - Y  

Y2  
We have the channel  throughput 

..I 

and  the throughput for user i 

i = l ,  2, * e - ,  M .  

In  the case of identical users (g; = g for all 11, we have 

e-go(M- I)-s(l+o) 

s+gM 1 - e-[s+g(M- I)lo 
X*(s)  = 

-- 
gM 

g ( M -  I)e-Nb+o) 
s+ g ( M -  1 )  

where 

1 F, = ay . 
g(M-  1 )  1 -y ' 

-- 

1 
Var [ Y,]  = -~ a2y . y = e - g u ( M - l ) .  

g2(M- 1 ) 2  ( 1  -y)2 ' 
The value  of g which maximizes S in (55) is  given as a  solution 
to the  equation 

(2M- 1 ) [ 1  -ga(M- l)] 

For M -+ 03 with G fixed at G = g M ,  we have 

G(s+ G)e-oc-s(l+Q) 
(~+G)2-G2e-s(b+a)[l - e - ( s + G ) o  

X * ( s )  = 
1 

Ge-uG 
2 + ( G - l ) e - u G + ( b + a ) G ( 1   - e - u G )  

The optimal G for (58) is  similarly  determined by 

S =  

2 ( 1 -  aG) = 1 + - (aG)2 + e-uG. ( 3 
VI. REMARKS AND NUMERICAL RESULTS 

In unslotted CSMA and unslotted CSMA/CD. 
derived X*@), S ,  and  Var [x] for systems  of identical users 
as special  cases  of  generally  nonidentical  users. However, it is 
possible to consider the cases  of identical users  using the 
formulation  of  Section 111. This treatment  is  shown in [8]. We 
have also omitted  the  presentation  of  trivial  analysis for slotted 
ALOHA. 

In Fig.  3(a), we plot the throughput  values for  the protocols 
we have studied when they are maximized by optimizing  the 
transmission parameters  (e.g., p and g). The results  shown are 
for the  limit M -+ 03 while  holding p M  or gM at a fixed finite 
value. (The  curves  for  CSMA/CD  are  for  the ideal case: b = 
a.) For proper comparison  between  ALOHA  and CSMA in an 
environment  of  nonzero  propagation  delay (a > 0) ,  we have 
uniformly assumed  that  the  duration  of  a  successful  transmis- 
sion  period  is 1 + a.  Thus,  the plots for  ALOHA systems are 
S/(1 + a) where S = l/e for slotted ALOHA and S = 1/(2e) 
for  pure  ALOHA.  The throughput for perfect  scheduling  is 
similarly  assumed to  be 1/(1 + a). These maximal throughput 
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Fig. 3. (a) The (maximized)  channel  throughput S.  (b) The  coefficient of 
variation C2 for packet  interdeparture  time. 

curves  have been studied in [4], 161, [lo]. The new results in 
the present paper are  the corresponding  plots in Fig. 3(b) of 
the  coefficient of variation of the  packet  interdeparture times. 
It is  remarkable that (at maximal throughputs) they are all 
below 1 .  Specifically, in efficient CSMA cases they are almost 
0, which implies  that  the  channel  service  time  is nearly 
constant. 

The throughput S and C2 for slotted CSMAKD are 
displayed in Fig. 4 with several  values of collision  detection 
time b (a '< b < 1). Again, for a typical example of a  local- 
area computer  network [I 13 where Q is from 0.01 to 0.1 and b 
is short (< 0.1, say),  we have  very small values  of C2, despite 
the fact that throughput  is  more or less  degraded.  This 
observation  suggests an MID/ 1 queueing model (with service 
rate  equated to the  given  channel  throughput)  approximation to 
the  queue length distribution. 

VI1 . CONCLUSION 
We  have  studied  the  packet departure processes in a  variety 

of contention-type  packet  broadcasting  systems with the heavy 

traffic  assumption. The channel  access  protocols  considered 
include both slotted and unslotted systems of ALOHA and 
carrier-sense-multiple-access (CSMA). The effects of colli- 
sion detection on CSMA have also been investigated. 

Through  the  analyis  of  channel activity cycles  alternating 
between the  idle  and (successfully or unsuccessfully) transmit- 
ting  states, we have derived the distribution  of  the packet 
interdeparture time X. Then we found the  channel  throughput 
(S  = l/% and  the  coefficient of variation of X (C2 = 
Var [x]/X2) explicitly. All the  results for the  distribution  of 
X a n d  C2 are new. Some results for S [specifically (21), (41), 
(44), (53). ( S S ) ,  and ( S S ) ]  are.also newly derived in this  paper. 
It has been shown that in efficient CSMA systems with 
collision  detection, Cz is very  small,  while the throughput 
suffers some degradation. 

Using X and C2 together with the  elementary renewal 
theorem, we have also obtained  the  asymptotic  behavior of the 
number  of  successful  transmissions at interfering individual 
queues. These results  can be used to determine  the  coefficients 
in the diffusion  process  approximation to the queue length 
distribution at users 19). 
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Fig. 4. The  channel  throughput (S)  and  coefficient of variation (Cz) for 
packet  interdeparture  time  in  slotted  CSMAKD. 

APPENDIX A Also, for i # j, from 

DERIVATION OF (4) 

Let F(z)  be  the z-transform of the  distribution of D(t), the 
number  of departures  from all  users during [0, t ] .  The  joint 
probability that during this  interval  user i attains Di(t) = ki 
departures (i = 1 ,  2, . * . , M ) ,  given  that D(t) = k,  is  given 
by a  multinominal  distribution 

D;(t) Dj(t)=-- 1 =q;q,[D<t>*-m] (A.7) aziazj z =  

the  covariance  is  given by 

cov [Di(t), Dj(t)] 4 D;(t)  * D j ( t ) - I q g  - Zqq 
k! 

k,!kz! * * .  kw! 
q1*1q2*2 * * * 4 M k M  (A. 1) = q;qj [om2 - ml- q i q j  [D)I* 

where k = kl + k2 + . . + kM, and qi is  the  probability that 
a departure is achieved by user i. Thus, the  conditional joint  z- 
transform  of D(t) = [Dl(t) ,  Dz(t), . a ,  DM(t)] is  given by 

(4121 + q2z2 + * . + qMZM)* (A.2) 
Equations (A.4), ( A . 7 ) ,  and (A.8) give (4). 

and  the  unconditional joint z-transform of D(t) is  given by a 
compound  distribution 

G ( z )  = F(qlz l+ q2z2 + * + q M z M )  (A.3) 

where z = [ZI , z2, * * , z ~ l .  
Now,  from (A.3) and  the  definition of F(z),  the means and 

covariances  of D(t) can be formally  calculated. First,  the mean 
is  given by 

m=- = q; - 

=q;m i = l ,  2, * . e ,  M (A.4) 

where 1 = [ l ,  1 ,  - . a ,  1 3 .  Next, from 

the  variance is given by 

APPENDIX B 

DERIVATION OF (15) 

In an infinite population of pure ALOHA users, the  duration 
of  an  .unsuccessful  transmission  period F consists of an 
indefinite  number (L ,  say) of packet interarrival  times  whose 
durations are less than 1 (denoted by f"), f@), . . * , f t L ) )  
terminated by a  full length of 1 (see Fig. 5): 

F= f ( l ) +  f @ ) +  . . . + f ( L ) +  1. (B. 1) 

Allf(")'s are independent and identically distributed [let their 
generic  representation be f with its pdf's  Laplace  transform 
f *(@I as 

1 - e - G t  
Prob [ f  < t]=- 

1 -e-G 
O < t < l  

- 1 ecG 1 ecG 
f=------. 

G l - e - G  
; Var [ f ] = - -  

G2 ( 1  - e -G)2  

where G is  the rate of arrivals.  The number of such 
interarrival  times L [with its  distribution's  z-transform L*(z)] 
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is  independent off(“)’s and is geometrically  distributed as 

Prob [L=n]=( l -e -G)”- ’e-G  n=l ,  2, * * .  810730,  July  1981. 

ze- 
L*(z) = 

L = ec; Var [L]  = ec(ec- 1). 

From (B.1)-(B.3), we  have 

Ge-(S+G)[1 -e-(S+cc’] [9] H. Takagi  and  L.  Kleinrock,  “Diffusion  process  approximation for the 
F*(s) = e-”L*[f*(s)] = queueing  delay  in  contention  packet  broadcasting  sytems,” in Per- 

(1 -e-G)[s+Ge-(S+c)] formance of Computer-Communication  Systems, H. Rudin  and W. 
Bux. Eds. New York:  Elsevier/North;Holland,  1984, pp. 111-124. 

F=Lj+ 1 = 
eG-l-Ge-G 

G(l-  e-G) 

Var [ F ]  = L Var [f] + ( f ) 2  Var [ L ]  

e2G 2ec ecG 
G 2  G (1 -e-G)2 

- (B .4) 

which is  identical to (15). 
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